Seat	
No.	

[5057]-243

S.E. (E&TC/Electronics) (First Semester) EXAMINATION, 2016 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Define Bias Compensation. Draw and explain circuit of Diode Compensation against change in I_{CO} . [6]
 - (b) Calculate the values of A_V , A_{VS} , Ri, Ri', Ro' for BJT CE amplifier as shown in Fig. 1. [6] The h-parameter values are $h_{ie} = 1.1 \text{ k}\Omega$, $h_{fe} = 50$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 25 \text{ A}\mu/V$.

Fig. 1

- 2. (a) A Ge transistor is used in voltage divider bias circuit has V_{CE} = 8 V, I_{C} = 4 mA, β = 50, V_{CC} = 16 V, R_{C} = 1.5 Ω . If S = 12 is desired, then calculate values of R_{1} , R_{2} and R_{E} .
 - (b) Give comparison of CE, CB and CC amplifiers performance parameters. [6]
- 3. (a) Define and derive the expression for f_{α} , f_{β} and f_{T} . [6]
 - (b) Draw and explain circuit diagram of transistorized Colpitt's oscillator. Calculate the frequency of oscillations of a Colpitt's oscillator with $C_1=C_2=500~\mathrm{pF}$ and $L=1~\mathrm{mH}$. [6]

Or

- 4. (a) The following measurements were taken while testing an amplifier using square wave input waveform: [6]
 - (i) For square wave input frequency of 5 kHz the rise time of output waveform is 20 µsec,
 - (ii) For square wave input frequency of 100 Hz, there is sag of 1 V in 2.5 V amplitude observed on CRO.

Determine the bandwidth of an amplifier under test.

[5057]-243

((b)	Mention the effect of negative feedback on amplifiers	
		performance such as: [6]	
		(i) Gain	
		(ii) lower cut-off frequency	
		(iii) upper cut-off frequency	
		(iv) Noise,	
		(v) Non-linear distortion	
		(vi) Frequency distortion.	
5. ((a)	The dynamic transfer characteristic curve of transistor is :	
		$i_c(\text{mA}) = 50 \ i_b + 1000 \ i_b^2.$	
		Where i_b (mA) = 10 cos 2π (100 t).	
		Calculate the percentage second harmonic distortion. [6]	
((b)	Prove that the maximum possible efficiency of a Class B	
		amplifier is 78.5%. [7]	
		Or	
6. ((a)	Explain the following parameters of Power BJT: [6]	
		(i) Thermal Resistance	
		(ii) Safe Operating Area.	
[5057]-	-243	3 P.T.O.	

- (b) For a Class B power amplifier providing a 22 V peak signal to 8 Ω load and power supply of 25 V. Determine : [7]
 - (i) P_{dc}
 - (ii) P_{ac}
 - (iii) % η.
- 7. (a) Write a short note on: Bi-CMOS Inverter. [6]

Fig. 2

- 8. (a) The parameters of NMOSFET are k=0.2 mA/V², $\lambda = 0.01 \ V^{-1}, \ V_T = 1.2 \ V.$ Calculate output resistance for :
 - (i) $V_{GS} = 2 V$,
 - (ii) $V_{GS} = 4 V.$
 - (b) Explain the following non-ideal current voltage characteristics of EMOSFET: [7]
 - (i) Finite output resistance
 - (ii) Channel Length Modulation
 - (iii) Body Effect.