Total No. of Questions-8]
[Total No. of Printed Pages-5

[5057]-243

S.E. (E\&TC/Electronics) (First Semester) EXAMINATION, 2016 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Define Bias Compensation. Draw and explain circuit of Diode Compensation against change in I_{CO}.
(b) Calculate the values of $\mathrm{A}_{\mathrm{V}}, \mathrm{A}_{\mathrm{VS}}, \mathrm{Ri}, \mathrm{Ri}^{\prime}$, Ro' for BJT CE amplifier as shown in Fig. 1.
The h-parameter values are $h_{i e}=1.1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=50$, $\mathrm{h}_{\mathrm{re}}=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{oe}}=25 \mathrm{~A} \mu / \mathrm{V}$.

Fig. 1
P.T.O.

Or
2. (a) A Ge transistor is used in voltage divider bias circuit has $\mathrm{V}_{\mathrm{CE}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \beta=50, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}$, $\mathrm{R}_{\mathrm{C}}=1.5 \Omega$. If $\mathrm{S}=12$ is desired, then calculate values of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{E}.
(b) Give comparison of CE, CB and CC amplifiers performance parameters.
3. (a) Define and derive the expression for f_{α}, f_{β} and f_{T}.
(b) Draw and explain circuit diagram of transistorized Colpitt's oscillator. Calculate the frequency of oscillations of a Colpitt's oscillator with $\mathrm{C}_{1}=\mathrm{C}_{2}=500 \mathrm{pF}$ and $\mathrm{L}=1 \mathrm{mH}$.

Or

4. (a) The following measurements were taken while testing an amplifier using square wave input waveform :
(i) For square wave input frequency of 5 kHz the rise time of output waveform is $20 \mu \mathrm{sec}$,
(ii) For square wave input frequency of 100 Hz , there is sag of 1 V in 2.5 V amplitude observed on CRO.

Determine the bandwidth of an amplifier under test.
(b) Mention the effect of negative feedback on amplifiers performance such as :
(i) Gain
(ii) lower cut-off frequency
(iii) upper cut-off frequency
(iv) Noise,
(v) Non-linear distortion
(vi) Frequency distortion.
5. (a) The dynamic transfer characteristic curve of transistor is :

$$
i_{c}(\mathrm{~mA})=50 i_{b}+1000 i_{b}^{2}
$$

Where $i_{b}(\mathrm{~mA})=10 \cos 2 \pi(100 t)$.
Calculate the percentage second harmonic distortion.
(b) Prove that the maximum possible efficiency of a Class B amplifier is 78.5%.

Or

6. (a) Explain the following parameters of Power BJT :
(i) Thermal Resistance
(ii) Safe Operating Area.
(b) For a Class B power amplifier providing a 22 V peak signal to 8Ω load and power supply of 25 V . Determine :
(i) P_{dc}
(ii) P_{ac} (iii) \% η.
7. (a) Write a short note on : Bi-CMOS Inverter.
(b) For the transistor shown in Fig. 2 has the parameter $\mathrm{V}_{\mathrm{T}}=0.8 \mathrm{~V}, \mathrm{k}=0.5 \mathrm{~mA} / \mathrm{V}_{2}$. Determine the values of V_{DS} and I_{D}.

Fig. 2

Or

8. (a) The parameters of NMOSFET are $k=0.2 \mathrm{~mA} / \mathrm{v}^{2}$, $\lambda=0.01 \mathrm{~V}^{-1}, \mathrm{~V}_{\mathrm{T}}=1.2 \mathrm{~V}$. Calculate output resistance for :
(i) $\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V}$, (ii) $\quad \mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}$.
(b) Explain the following non-ideal current voltage characteristics of EMOSFET :
(i) Finite output resistance
(ii) Channel Length Modulation
(iii) Body Effect.
