[Total No. of Printed Pages—3

Seat	
No.	

[5057]-272

S.E. (Instrumentation and Control Engineering) (I Sem.) EXAMINATION, 2016

LINEAR INTEGRATED CIRCUITS

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Your answers will be valued as a whole.
 - (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if necessary.
- **1.** (a) Explain the difference between open-loop and closed-loop OP-AMP with neat diagrams. [6]
 - (b) Explain different types of Noise in OP-AMP. [6]

Or

2. (a) How to measure the Common Mode Rejection Ratio of OP-AMP with neat circuit diagrams? [6]

P.T.O.

	(<i>b</i>)	Derive the voltage equation for the voltage-series feedback
		amplifier with neat circuit diagram. [6]
3.	(a)	Explain chopper stabilized amplifier with neat circuit
		diagram. [6]
	(<i>b</i>)	State Barkhausen criteria for suitable oscillation. Design
		Wein-bridge oscillator for the output frequency of $F_o = 1 \text{ kHz}$
		with neat circuit diagram. Assume suitable data. [6]
		Or
4.	(a)	Explain current booster circuit using OP-AMP with neat
		diagrams. [6]
	(<i>b</i>)	Explain Inverting Schmitt trigger with neat circuit diagram,
		waveforms and hysteresis. [6]
		•
5.	(a)	Explain Astable Multivibrator using IC 555 with neat circuit
		diagram and waveforms. [8]
	(<i>b</i>)	Draw and Design High Voltage Regulator (HVR) using IC 723
		for 12 V output. Assume suitable data. [5]
		Or
6.	(a)	Design One-shot multivibrator using IC 555 with neat circuit
		diagrams for the pulse width of 2.97 ms. [5]
[5057	7]-272	2

- (b) What is Regulator? State advantages of switching regulator over linear regulators. [8]
- 7. (a) Explain second order Butterworth high-pass filter and also draw circuit diagram. [8]
 - (b) What is "Q" of filter? Draw a detailed ideal and practical responses for all types of filters. [5]

Or

- 8. (a) Explain Butterworth Twin-T filter using neat circuit diagram and its response. [6]
 - (b) Design first order Butterworth non-inverting low-pass filter for the cut-off frequency of 1000 Hz. Assume suitable data with neat circuit diagrams. [7]