Seat No.	

[5057]-2073
S.E. (Instrumentation and Control) (I Sem.) EXAMINATION, 2016 BASIC INSTRUMENTATION
(2015 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Figures to the right indicate full marks.
(iii) Assume suitable data, if necessary.
(iv) Use of non-programmable calculator is allowed.
(v) Neat diagrams must be drawn wherever necessary.

1. (a) A Multimeter having a sensitivity of $1500 \Omega / \mathrm{V}$ is used to measure the voltage across the circuit having an output resistance of $10 \mathrm{k} \Omega$. The open circuit voltage of the circuit is 8 V . Find the reading of Multimeter when it is set to its 10 V scale. Find the percentage error in instrument reading and true value.
(b) Explain the construction and working of single phase wattmeter with neat diagram.

Or

2. (a) Explain the desirable static and dynamic characteristics. [6]
(b) A moving coil instrument gives a full scale deflection of 10 mA when the potential difference across its terminal is 100 mV . Calculate :
(a) the multiplying factor and
(b) shunt resistance for a full scale deflection corresponding to 100 A current. [6]
3. (a) Draw a neat diagram of analog oscilloscope. Explain the function of each block.
(b) The basic a.c. bridge consists of the following constants : $\operatorname{Arm} \mathrm{AB}\left(\mathrm{Z}_{1}\right): \mathrm{R}_{1}=400 \Omega ; \operatorname{Arm} \mathrm{BC}\left(\mathrm{Z}_{2}\right): \mathrm{R}_{2}=150 \Omega$ in series with $\mathrm{C}_{2}=0.2 \mu \mathrm{~F}$; $\operatorname{Arm} \operatorname{CD}\left(\mathrm{Z}_{4}\right)$: Unknown; Arm $\mathrm{DA}\left(\mathrm{Z}_{3}\right): \mathrm{R}_{3}=100 \Omega$ in series with $\mathrm{L}_{3}=10 \mathrm{mH}$. The source oscillator frequency is 1 kHz . Determine the constants of the arm CD. Source is connected across BD and detector is connected across AC. (Construct diagram).

Or

4. (a) Explain the terms vertical coupling, Z-Axis and sources of triggering with reference to oscilloscope.
(b) Derive the equation to determine the magnitude of unknown resistance with the help of Wheatstone bridge. Explain the errors in bridge circuit.
5. (a) What is energy ? To measure this energy, prepare a block diagram of digital energy measurement system and explain the significance of each block briefly.
(b) Explain the digital capacitance meter with neat diagram. [6] Or
6. (a) Draw and explain the block diagram of digital multimeter. Give the specifications of DMM.
(b) Prepare and explain a block diagram of digital temperature measurement system which consist of a K type thermocouple for measurement of temperature of the process in the range $0^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$. The output of transducer contains a noise in the range of 80 Hz to 1.5 kHz . Assume the data and conditions, if any.
7. (a) Explain X-Y recorder with neat diagram.
(b) Explain the following terms (each 2 marks) :
(i) Single and Multichannel recorder
(ii) Marking with heated stylus
(iii) Tracing systems.

Or
8. (a) What is $x-t$ recorder ? Explain each component of it with neat diagram.
(b) Draw a neat diagram of function generator and explain it briefly.

