SEAT No.:	
-----------	--

P1755

[Total No. of Pages :3

[5058] - 395

T.E. (Computer)

THEORY OF COMPUTATION

(2012 Course) (Semester - I) (310241)

Time: 2½ Hours] [Max. Marks:70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) What is Kleen Closure? What is Positive Closure? For a given language L under what circumstances will L⁺ and L^{*} be equal?
 - b) Construct a DFA over the alphabets {0, 1} for accepting the strings having number of 1's as multiple of 3. [6]
 - c) Check whether the given grammar is in CNF. If not then find its equivalent CNF.[8]

$$S \rightarrow bA \mid aB, A \rightarrow bAA \mid aS \mid a, B \rightarrow aBB \mid bS \mid b$$

OR

- **Q2)** a) Define a Language of Polynomials recursively and give derivation for $7X^4 3X^3 + 15X$ [6]
 - b) Construct finite automata for the following regular expressions. [6]
 - i) 01[((10)*+111)*+0]*1
 - ii) 1(1+10)*+10(0+01)*
 - c) Simplify the following grammar

i) $S \rightarrow Ab, A \rightarrow a, B \rightarrow C \mid b, C \rightarrow D, D \rightarrow E, E \rightarrow a$

ii) $S \rightarrow 0A0 |1B1|BB, A \rightarrow C, B \rightarrow S |A, C \rightarrow S| \in$

[8]

- "If L_1 & L_2 are recursive languages, then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also **Q3**) a) recursive." Justify. [6]
 - b) What is NDTM? Construct a NDTM to recognize words of the form WW over alphabet {a, b}. [12]

OR

What is a post machine? Give formal definition of Post Machine. **Q4**) a) Construct a Post Machine for Having odd length and a's as center element. [10]

Write short note on (Any two): b)

[8]

- i) Universal Turing Machine (UTM).
- Languages accepted/ decided by TM. ii)
- iii) Recursively Enumerable Languages.
- What is PDA? What are the different types of PDA? Give its **Q5)** a) applications. [7]
 - Obtain the CFG for the PDA given by $M = \{\{q_0, q_1\}, \{0, 1\}, \{z_0, X\}, \{z_$ b) δ, q_0, z_0, ϕ } where δ is given as.

$$\delta(q_0, 1, z_0) = \{q_0, xz_0\}$$
 $\delta(q_0, 1, x) = \{q_0, xx\}$

$$\delta(q_0,1,x) = \{q_0,xx\}$$

$$\delta(q_0, 0, x) = \{q_1, x\} \qquad \delta(q_0, \varepsilon, z_0) = \{q_0, \varepsilon\}$$

$$\delta(q_0, \varepsilon, z_0) = \{q_0, \varepsilon\}$$

$$\delta(q_1,1,x) = \{q_1,\varepsilon\}$$

$$\delta(q_0,1,z_0) = \{q_0,z_0\}$$

OR

- Construct a PDA that accept $L = \{a^n b^n \mid n \ge 1\}$ through Empty Stack. [6] **Q6)** a)
 - What is NPDA? Construct a NPDA for $L = \{a^i b^j c^k \mid i \neq j \text{ or } j \neq k\}$ [10] b)

- Q7) a) What do you mean by NP Complete Problems? Listall the problems in this class and Explain any one with suitable example. [8]
 - b) Why do we need to reduce existing problems to NP-Complete problems? Explain with suitable example. [8]

OR

- **Q8)** a) What is SAT problem? Explain in detail. [8]
 - b) What are Tractable and Intractable problems? Explain. [4]
 - c) What is Computational Complexity? Explain. [4]

BOOKED