Total No.	of Questions	:	8	١
-----------	--------------	---	---	---

SEAT No.:	

P1720

[5058]-353

T.E.(Electronics.)

NETWORK SYNTHESIS

(2012 Pattern)(Semester-I)

Time: 2½ Hours]

[Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2,Q3 or Q4,Q5 or Q6,Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Test whether the following functions are positive real, [6]

i)
$$F(s) = \frac{s^2 + 4}{2s^3 + 3s^2 + 6s + 1}$$

ii)
$$F(s) = \frac{(s+2)(s+4)}{(s+1)(s+3)}$$

b) Synthesize the following function using cauer-I and cauer-II form, [6]

$$Z(s) = \frac{2(s+1)(s+3)}{s(s+2)}$$

c) State the properties of Transfer function and synthesize the following Transfer function. [8]

$$Z_{21}(s) = \frac{s}{s^3 + 3s^2 + 3s + 2}$$

as a 1Ω terminated two port LC ladder network.

OR

- **Q2)** a) Define all the four transfer functions for a two port network and explain effect of location of poles and zeros on response of the network. [7]
 - b) State and explain the properties of LC impedance function and also indicate which of the following functions are LC, RC,RL, or RLC impedance functions. [7]

i)
$$Z(s) = \frac{s^3 + 2s}{s^4 + 3s^2 + 2}$$

ii)
$$Z(s) = \frac{s^2 + 4s + 3}{s^2 + 6s + 8}$$

iii)
$$Z(s) = \frac{s^4 + 4s^2 + 3}{s^3 + 2s}$$

c) Define constant resistance network? Design a bridge T network terminated in 1Ω to give a voltage transfer ratio [6]

$$G_{12}(s) = \frac{s+2}{s+3}$$

- Q3) a) Compare Butterworth and Chebyshev Approximation Techniques. [4]
 - b) Determine the transfer function and realize low pass Butterworth approximation filter whose requirements are characterized by,

Pass band edge frequency 0.2 Mrad/sec, maximum loss in pass band 2dB, stop band loss at least 60 dB at 6Mrad/sec [8]

c) Normalized third order Low pass filter is shown below in Fig.1 [4]

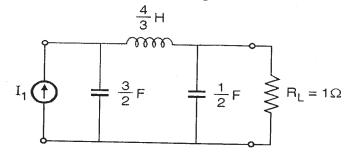


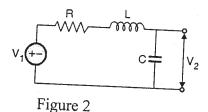
Figure 1

Design the corresponding high pass filter with its cutoff frequency ω_c =10⁴rad/sec and the impedance load of 500 Ω

	c)		ermine the transfer function of Chebyshev low pass filter to meet owing specification,	the [8]
		i)	0.5 dB ripple in the pass band.	
		ii)	Cut off frequency $w_c = 5x \cdot 10^5 \text{ rad/sec.}$	
		iii)	The Magnitude must be down to 30 dB at $w= 1.5 \times 10^6$ rad/sec.	,
		iv)	Load resistance= 600Ω	
Q 5)	a)	Diff	Ferentiate between Passive and Active filters.	[4]
	b)	2 kF	thesize 2 nd order active low pass filter to have a pole frequency. It and pole Q of 10. Then using RC-CR transformation, realize H same cut off frequency.	
	c)		at are the advantages and disadvantages of biquad topologies we filter?	s of [6]
			OR	
Q6)	a)		ign 2 nd order Sallen and Key high pass Butterworth filter having frequency of 600 Hz.	cut [4]
	b)	Exp	lain the different feedback topologies used in active filter designing	,. [4]
	c)	•	thesize the following high pass filter function using RC-sformation.	CR [8]
		H($s) = \frac{ks^2}{s^2 + s + 25}$	
Q 7)	a)	Def	ine Sesitivity? Give some of its important properties.	[4]
	b)	-	lain the concept of gain sensitivity? Also explain the various factoring the gain sensitivity.	tors [6]
	c)	Exp	lain effect of the following op-amp characteristics on the active fil	lter. [8]
		i)	Dynamic range	
		ii)	Input Bias Current.	
		iii)	Slew rate.	
		iv)	CMRR	

[4]

[4]


Q4) a) Explain frequency and impedance Scaling.

b)

State the properties of Butterworth Approximation.

OR

Q8) a) For the series RLC circuit shown in Fig.2, find transfer function V_2/V_1 . Calculate the sensitivities of K, the pole frequency ωp , the factor(Q_p) with respect to R,L and C. Comment on the result obtained. [6]

- b) Prove the following sensitivity relationships.
 - i) $S_x^{p^n} = nS_x^p$
 - $ii) S_{\sqrt{x}}^p = 2S_x^p$
 - $iii) \quad S_x^{y+c} = \frac{y}{y+c} S_x^y$
- Explain the effect of offset voltage on active filter performance. The input to the inverter shown in Fig.3 is a sine wave of amplitude 5 volt. If the slew rate of the op amp is 1V/μ sec, find the frequency at which the slew rate limiting occurs.

[6]

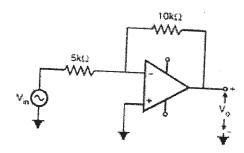


Figure 3

