Total	No.	of Questions	:	10]	ı
--------------	-----	--------------	---	-----	---

SEAT No.:	

P2982

[5058]-374

[Total No. of Pages: 3

T.E. (Instrumentation and Control) CONTROL SYSTEM DESIGN

(2012 Course) (Semester - I) (306264)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Use of Calculator is allowed.
- 4) Assume Suitable data if necessary.
- 5) All questions are compulsory.
- Q1) a) Derive the transfer function for electrical lead network. [6]
 - b) Explain effect of addition of poles on stability of system using root locus approach. [4]

OR

- **Q2)** a) Find out damping ratio, frequency of natural oscillation, velocity error constant if system with transfer function $G(s) = \frac{4}{s(s+2)}$ is compensated
 - using lead compensator with transfer function $G_c(s) = 4.7 \frac{s + 2.9}{s + 5.4}$. [6]
 - b) Compare the features of Lead and Lag compensator [4]
- **Q3)** a) Explain P, I and D control action with controller settings and their effect on stability of system. [4]
 - b) Explain direct synthesis method of controller design for first order system with and without delay time in brief. [6]

OR

Q4) The forward path transfer function of unity feedback control systems is given as $G(s) = \frac{100}{(s+1.5)(s+4)(s+8)}$ if $e_{ss} = 0.1$ for unit ramp input, the dominant closed loop pole located at -1 ± 2.5 j. Design a PID controller. [10]

Q5) a) Obtain state model in three different canonical form for system with transfer function. [12]

$$\frac{Y(s)}{U(s)} = \frac{2s^2 + 6s + 5}{(s+1)^2(s+2)}$$

b) Explain advantages of state space representation over classical representation. [6]

OR

Q6) a) Find out transfer function of system from state model. [12]

and
$$\dot{x} = \begin{bmatrix} 0 & 0 & -20 \\ 1 & 0 & -24 \\ 0 & 1 & -9 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} u$$
 and $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$.

- b) Explain the terms state, state variable, state vector and state space. [6]
- Q7) a) Determine state transition matrix using Cayley Hamilton theorem for following plant matrix $A = \begin{bmatrix} -4 & 3 \\ -6 & 5 \end{bmatrix}$. [8]
 - b) Determine controllability and observability of system of following state model. [8]

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix} x$$

OR

Q8) a) Obtain output response of following system with unit step input and initial condition as $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. [10]

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

b) Determine whether following system is state controllable and state observable or not? [6]

$$\dot{x} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Q9) Find state feedback gain matrix for the system to place the desired closed loop poles at location s = -2 + 2j, s = -2 - 2j. [16]

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} u$$

OR

Q10) Design a Full order observer for the system defined by following state equation

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} u$$

Given the set of desired poles for the observer s = -8, -8. [16]

• • •