SEAT No.:

P1765

[Total No. of Pages :4

[5058] - 405 T.E. (IT)

THEORY OF COMPUTATION

(2012 Pattern) (End Semester) (Semester - I)

Time: 2½ Hours] [Max. Marks:70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) Construct a deterministic finite automata (DFA) for accepting L over (0, 1) such that every substring of length 4 contains at least three 1'S. [4]
 - b) Construct DFA for the R.E 10 + (0 + 11) [6]

OR

Q2) a) Construct Moore machine for given Mealy machine. [6]

b) State the pumping lemma theorem for regular sets. Show that the language $L = \{0^n \mid n \text{ is prime}\}\$ is not regular. [4]

Q3) a)	Convert given CFG to GNF.	[6]
	S->AA 0	
	$A \rightarrow SS 1$	
b)	Consider CFG with productions	[4]
	S->baXaS ab	
	X->Xab aa	
	If w = baaaababaab then give rigtmost derivation and leftmost derivation of w.	ıtion
	OR	
Q4) a)	Convert the following grammar to their equivalent CNF.	[6]
	S->1A 0B	
	A->1AA 0S 0	
	B->0BB 1S 1	
b)	Convert Left Linear Grammar to equivalent Right linear Grammar.	[4]
	S->C0 A0 B1	
	A->A1 C0 B1 0	
	B->B1 1	
	C->A0	
Q5) a)	Define PDA	[4]
Q 3) a)	i) Through final state	[ד]
	ii) Through empty stack	
b)	Design a PDA for the language $L = \{a^nb^mc^n m, n > = 1\}$ by empty stack	z [8]
c)	Construct PDA equivalent to the following CFG.	[6]
	S->0A1 0BA	[~]
	A->S01 0	
	B->1B 1	
	OR	
[5058] -		

Q6) a) Give CFG generating the language accepted by following PDA $\mathbf{M} = \big(\{q0,q1\}, \{a,b\}, \{z0,X\}, \delta, q0, z0,\emptyset \} \big), \delta \text{ is given below}$ [8] $\delta(q0,b,z0) = \big\{ (q0,Xz0) \big\}$ $\delta(q0,b,X) = \big\{ (q0,XX) \big\}$

$$\delta(q0,a,X) = \{(q1,X)\}$$

$$\delta(q0,\varepsilon,z0) = \{(q0,\varepsilon)\}$$

$$\delta(q1,b,X) = \{(q1,\varepsilon)\}$$

$$\delta(q1,a,z0) = \{(q0,z0)\}$$

- b) Design PM to for $L = \{a^n b^n c^n \mid n > = 0\}$ Can you design NPDA for same? Justify. [6]
- c) Compare the power of Post machine and Push down Automata. [4]
- **Q7)** a) Design a Turing Machine to add two unary numbers. [8]
 - b) Explain Halting problem of TM. [4]
 - c) Differentiate between FA, PDA and TM. [4]

OR

- **Q8)** a) Construct TM to replace string 110 by 101 in binary input string. [8]
 - b) Write short note on Universal Turing machine. [8]
- **Q9)** a) Explain Post Correspondence Problem with example. [8]
 - b) Explain recursive language and recursively enumerable language with suitable example. [8]

OR

Q10)a) Define decidability of problem with example. Describe undecidable problems for Context Free Grammar. [8]

b) Write short note on

[8]

- i) Multitape TM
- ii) Turing Reducibility.

(38)