Total No. of Questions: 12]		SEAT No.:	
P1597	[5059] 12	[Total No. o	of Pages :

[5058]-13 T.E.(Mech.) HEAT TRANSFER (2008 Course)(Semester-I)

Time: 3Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer to the two sections should be written in separate answer books.
- 2) Answer any 3Questions from each section.
- 3) Figures to the right side indicate full marks.
- 4) Use of non programmable calculator is allowed.
- 5) Assume suitable data, if necessary.

SECTION-I

- Q1) a) State Fourier law of heat conduction with notations and deduce an expression for steady state heat conduction in a hollow cylinder of radii r₁ and r₂, subjected to temp T₁ and T₂.
 [6]
 - b) The walls of a house 4m high, 5m wide and 0.3 m thick are made with brick (k = 0.9 W/m-K). Temperature of air inside house is 20°C and out side air is at -10°C. There is heat transfer coefficient of 10W/m^2 -K at inside wall and 30W/m^2 -K at outside wall. Calculate inside and outside wall temperatures heat flux and total heat transfer rate through the wall. [10]

OR

- **Q2)** a) Define
 - i) Thermal conductivity and explain effect temperature on thermal conductivity of metals. [3]
 - ii) Electrical analogy for steady state heat conduction across a slab.[3]
 - b) A long hollow cylinder (k= 50 W/m-K) has an inner radius of 10 cm and outer radius of 20 cm. The inner surface is heated uniformly at constant rate of 1.16×10⁵ W/m², while outer surface is maintained at 30°C. Calculate temperature at inner surface. [10]
- Q3) a) Discuss the application of insulation on electrical cables. [4]
 - b) A hollow sphere of inside radius 30 mm and outside radius 50 mm is electrically heated at its inner surface at a constant rate of 10⁵W/m². The outer surface is exposed to air at 30°C with h=170 W/m²-K. Thermal conductivity of material is 20W/m-K. Calculate inner and outer surface temperatures. [10]

	OR				
Q4) a)	Explain electrical analogy for steady state heat conduction through hollow sphere. [4]				
b)	Explain the concept of critical thickness of insulation on hollow cylinder with the help of material and surface resistances. [6]				
c)	Deduce an expression for overall heat transfer coefficient based on inner suface for 3 layers hollow cylinder of radii $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4$ and length L. The cylinder is also subjected to convection heat transfer at inner and outer surfaces with \mathbf{h}_1 and \mathbf{h}_2 respt. [6]				
Q5) a)	Derive an expression for temperature distribution in constant cross sectional fin subjected temperature T_0 at its base and insulated at its tip. [6]				
b)	Three identical straight fins, 10 mm in diameter and 120 mm long are exposed to an ambient with h= 32W/m²-K. Compare their fin efficiency and relative heat flow performance. The material and thermal conductivity of three materials are				
	Copper $k=380 \text{ W/m-K}$				
	Aluminium $k=210 \text{ W/m-K}$				
	Mild steel $k=45 \text{ W/m-K}$				
	OR				
Q6) a)	Define with physical significance				
	i) Biot Number [3]				
	ii) Fourier number [3]				
b)	A thermocouple junction in a form a 4 mm diameter sphere. The properties are				
	C = 420 J/kg.K $k = 40 W/m-K$				
	$\rho = 800 \text{ kg/m}^3$ $h = 40 \text{ W/m}^2\text{-K}$				
The junction is initially at 40°C is inserted in a stream of l					

After 10 minute exposure in air at 300° C junction is then kept in air stream at 30° C with h = 10 W/m²-K for 20 seconds. Calculate the

[2]

[12]

[5058]-13

Time constant

temperatures of junction at two states.

300°C.Find

i)

Define thermal diffusivity.

c)

SECTION-II

Q7)	a)	Defi	ne with notation and dimensions.	[8]
		i)	Black body	
		ii)	Irradiation	
		iii)	Emissive power	
		iv)	Radiosity	
	b)	A spherical liquid oxygen tank 0.3 m in dia is enclosed concentrically in a spherical container of 0.4 m dia. The space in between is evacuated. The tank surface is at-183°C and has an emissivity of 0.2. The container outer surface is at 15C with emissivity of 0.25. Calculate net radiation heat exchange.		
			OR	
Q8)	(28) a) What is gray body approxima		at is gray body approximation?	[6]
	b)	Defi	ne radiation	[4]
		i)	surface resistance and	
		ii)	space resistance.	
	c)	State	e	[6]
		i)	Kirchoff's law	
		ii)	Wien's displacement law	
		iii)	Lambert cosine law	
Q9)	a)	Make difference between natural and forced convection.		[4]
	b)	Exp	lain the physical mechanism of natural convection.	[4]
	c)	Discuss the dimensional analysis for forced convection. [8		
			OR	
Q 10) a)	Defi	ne with physical significance	[6]
		i) Reynolds number		
		ii) Grashoff number		
		iii)	Prandtl number	

b) Water at 20°C flow through a small tube 1 mm in diameter with uniform velocity of 0.2m/s. The flow is fully developed and constant heat flux of 6kW/m² is imposed. How much further down water in tube will reach a temp of 74°C? [10]

The properties of water at 320K

$$\rho$$
= 989 kg/m³ C_p = 4180 J/kg.K μ = 577 x 10⁻⁶ kg/ms k_f = 0.640 W/m-K. ϵ

- **Q11)**a) What are the different types of heat exchangers. Draw sketch of atleast two types. [6]
 - b) Derive an expression for LMTD for parallel flow heat exchanger. [8]
 - c) What do you mean by fouling of heat exchangers? Explain causes. [4] OR
- Q12)a) Compare film wise and dropwise condensation. [4]
 - b) State Limitations of LMTD method. [4]
 - c) A heat exchanger is required to cool 55000 kg/h of alcohol from 66°C to 40°C in a parallel flow heat exchanger using 40,000 kg/h of water entering at 5°C. Calculate [10]
 - i) Exit temperature
 - ii) Heat transfer rate
 - iii) Surface area required.

Take
$$U = 580 \text{ W/m}^2\text{-K}$$

 $C_p \text{ of alcohol} = 3760 \text{ J/kg.K}$
 $C_p \text{ of water} = 4180 \text{ J/kg.K}$

