P2042	[Total No. of Pages : 3	
Total No. of Questions : 8]	SEAT No.:	

[5059]-647

B.E. (Computer Engineering)

DATA MINING TECHNIQUES AND APPLICATIONS (2012 Pattern) (Semester - I)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1) or Q2), Q3) or Q4), Q5) or Q6), Q7) or Q8).
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.
- **Q1)** a) In real-world data, tuples with missing values for some attributes are a common occurrence. Describe various methods for handling this problem.

[6]

[8]

b) Explain the following terms:

[6]

- i) Constraint-based rule mining.
- ii) Closed and maximal frequent itemsets.
- c) Consider the following data for a binary class problem

A	В	Class	
Т	F	P	
Т	T	P	
Т	T	N	
Т	F	P	
Т	T	P	
F	F	N	
F	F	N	
F	F	N	
Т	T	P	
Т	F	N	

- i) Compute the information gain for A1 and A2.
- ii) What is the best split between A1 and A2 according to Information gain?
- iii) Compute the Gini index for A1 and A2.
- iv) What is the best split between A1 and A2 according to Gini index?

OR

Q2) a) Consider the market basket transactions shown below: [6]

Transaction ID	Items bought	
T1	$\{M, A, B, D\}$	
T2	$\{A, D, C, B, F\}$	
Т3	$\{A, C, B, F\}$	
T4	$\{A, B, D\}$	

Assuming the minimum support of 50% and minimum confidence of 80%

- i) Find all frequent itemsets using Apriori algorithm.
- ii) Find all association rules using Apriori algorithm
- b) What are the major tasks in data preprocessing? Explain them in brief.[6]
- c) Explain with suitable example:

[8]

- i) k-Nearest-Neighbor Classifier
- ii) Scalable decision tree
- **Q3)** a) Consider the following points six points:

[8]

P1(0.40, 0.53), P2(0.22, 0.38), P3(0.35, 0.32), P4 (0.26, 0.19), P5(0.08, 0.41) and P6(0.45, 030).

Perform the single link hierarchical clustering and show your reults by drawing a dendrogram.

- b) Explain with suitable example the k-medoids algorithm
- [6]
- c) What are the requirements of clustering in data mining?

[3]

OR

Q4) a) What is meant by cluster analysis?

- [4]
- b) Explain with suitable example the K-means algorithm.
- [5]

c) Differentiate between following clustering methods

[8]

- i) Single and complete link
- ii) Hierarchical and partitioning

Q5)	a)	Precision and recall are two essential quality measures of an information retrieval system. [6]			
		i) Why it is usual practice to trade one measure for the other? Expla	iin.		
		ii) Why F-score is a good measure for trade between precision a recall.	ınd		
	b)	Compare the different text mining approaches.	[5]		
	c)	Explain the following terms:	[6]		
		i) Bag of words			
		ii) Feature vector			
		OR			
Q6)	a)	What is Web usage mining? Explain in brief.	[6]		
	b)	Differentiate between document selection and document ranking method of information retrieval.	ods [5]		
	c)	Explain the following terms:	[6]		
		i) Authoritative Web pages			
		ii) Hub pages			
		iii) Document Object Model (DOM) structure			
Q7)	a)	•	sed [6]		
	b)	What are the similarities and differences between reinforcement learning and artificial intelligence algorithms?	ing [5]		
	c)	Write short note on mining of big data.	[5]		
		OR			
Q8)	a)	What is meant by wholistic learning?	[4]		
	b)	Briefly explain the reinforcement learning.	[6]		
	c)	What is meant by multi-perspective decision making? Explain.	[6]		

