Total No. of Questions : 10]	SEAT No. :
P1954	[Total No. of Pages : 6

[5059]-531

B.E. (Mechanical)

REFRIGERATION & AIR CONDITIONING

(2012 **Pattern**)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:-

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of refrigeration tables, friction chart, psychrometric chart, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) Dense air refrigeration plant working on Belt Coleman cycle produces 6 tonn of ice at 0°C per day. Lowest pressure is 1 bar and suction temperature is 20°C. Pressure ration is 6 and adiabatic index of compression and expansion is γ =1.4. Temperature of air leaving condenser is 40°C.
 [8]

Find ·

- i) COP
- ii) Mass flow rate of air refrigerant
- iii) Piston displacement
- iv) If bore dia = stroke length and double acting compressor has speed 300 rpm.

Find dimensions of bore. Given = $Cp_{water} = 4.187 \text{ kJ/kgK}$

Latent heat of fusion of ice = 335 kJ/kg

Water inlet temperature 15°C.

Draw P-V, T-S diagram.

b) Write short note = Air conditioning required in Hospital.

[2]

- Q2) a) Explain with neat block diagram working of domestic refrigerator. State important parameters.[3]
 - b) Reversible carnot heat engine absorbs heat at temperature T_{2E} and rejects heat to sink at temperature T_1 . The power developed by engine is used to drive reversible carnot refrigerator which absorbs heat from reservoir at temperature T_{2R} and rejects heat at T_1 . If $T_{2E} = 600$ K and $T_{2R} = 300$ K, Find
 - i) T₁, such that heat supplied to heat engine is equal to heat absorbed by refrigerator.
 - ii) Find T₁, such that efficiency of Engine is equal to COP of refrigerator. Draw Block Diagram.
- Q3) a) Ice factory produces 20 tonnes of ice per day from and at 0°C. The evaporator temperature is -8°C and condenser temperature of 30°C. Refrigerant R-12 is subcooled by 5°C before throttling. Suction vapors are superheated by 2 degree. If the single acting twin cylinder compressor has speed 1000 rpm, L:D ratio 1.5
 [8]

Find

- i) COP
- ii) Condenser capacity including subcooling
- iii) Stroke length, if volumetric efficiency of compressor = 0.945

Latent heat of fusion of ice = 335 kJ / kg.

- * <u>Use of Refrigerant chart R 12 is allowed</u>. Draw p-h diagram with parameters.
- b) List the desirable properties of refrigerant

[2]

- i) Thermo physical
- ii) Chemical in one line (minimum two each)

OR

- **Q4)** a) Give important conditions of Monbeal protocol and Kyoto protocol.[3]
 - b) Refrigeration plant work on CO₂ refrigerant with compressor displacement 0.25 m³/min. Evaporator and condenser temperatures are -15°C and 25°C respectively. Degree of subcooling 10°. If the isentropic compression is wet with volumetric efficiency 85% such that specific enthaly at the beginning of compression is 295.5 kJ/kg, [7]

Find

- i) COP
- ii) Capacity in TR
- iii) Power required. Draw p-h, T-S diagram with parameters mentioned. Specific heat of CO_2 liq = 2.4 kJ/kgK. Use following table properties.

temp.	P	V_{f}	V_{g}	h_{f}	h_{g}	Sf	\mathbf{S}_{g}
°C	bar	m³/kg		kJ/kg		kJ/kgK	
-15	22.88	0.00101	0.0166	49.62	322.86	0.1976	1.2567
15	50.92	0.00130	0.0063	127.75	308.08	0.4697	1.0959
25	64.32	0.00147	0.0042	164.17	283.63	0.5903	0.9912

Q5) a) Air is supplied to Room at - DBT = 22°C and RH = 55%. Hot air is passed through water spray section where water is sprayed at 10°C. Supply air has saturation temperature of 3°C is supplied over heater before water spray.

Find

- i) mass of water sprayed per m³ of air
- ii) temperature of air after heating. Show process on psychrometric chart. Use of psychrometric chart is allowed.
- b) Describe thermodynamics of human body temperature control. [5]
- c) Elaborate in detail factors contributing cooling load. [5]

OR

- **Q6)** a) DBT of air 32°C and WBT is 20°C, is passed through cooling coil at 5°C saturation temperature. The heat extracted by coil is 14 kW; and air flow rate is 42.5 m³/min. Using psy chart find [5]
 - i) DBT and WBT of air leaving coil.
 - ii) By pass factor of cooling coil.

Show process on chart schematic.

b) Define: [6]

- i) RSHF
- ii) GSHF
- iii) ESHF

with representation on schematic psychrometric chart. (All processes to be shown on single figure only). Explain their physical significance.

- c) If the total barometric pressure is 97 kPa and DBT = 36°C and DPT=15°C, from fundamentals find properties of moist air. [5]
- Q7) a) For cold storage plant, vegetable storage capacity is 450 tonnes. Inside design condition 19°C DBT, 60% RH. Outdoor conditions 36°C DBT, 28°C WBT Infiltration 180 m³/hr., Fresh air supply 4500m³/hr. Number of operators working = 20.

Heat gain through glass = 5.5 kW

Sensible heat gain through wall, ceiling = 10.8kW

Water content in vegetables = 74%

Loss of water content per hour = 0.01%

Heat from equipments etc = 3.1kW

System consist of cooling & dehumidifying and then re-heating (if required) such that air entry temperature should not exceed 16°C.

Determine

- i) amount of air recirculated, if it is mixed with fresh air before entering the cooling coil.
- ii) Capacity of heating coil. Use psychrometric chart. Show processes on schematic.
- b) How the infiltration load are Estimated. Explain with example. [5]

OR

- **Q8)** a) Explain the concept 'comfort'; the factors affecting the human comfort and use of comfort chart. [6]
 - b) For airconditioned space,

[8]

RSH = 200 kW, RLH = 30 kW.

Supply air is 8 times the fresh air required.

Indoor conditions = 44°C DBT, 30% RH

Outdoor conditions = 26° C DBT 50% RH

By pass factor of coil = 0.15

Find

- i) Temperature & sp. humidity at inlet to coil.
- ii) If temperature of air leaving coil is 16°C find specific humidity at outlet.
- iii) Supply air rate.
- c) What are the advantages and limitations of capillary tube compared to other expansion devices. [3]

For the above duct system inlet velocity of air at A-A is 540 m/min. Loss in $(B-C) = \frac{1}{2} \times \text{velocity}$ pressure in (A-B), Loss in $(D-E) \frac{1}{5} \times \text{Velocity}$ pressure in (E-F) using friction loss equation $P_f = \frac{0.263 \text{ C}^{1.85}}{D^{1.27}}$, where

 P_f = friction loss in mm of water per 100 m length of duct.

C = duct velocity (m/s)

D = duct diameter (m)

Calculate static pressure at 'A'

b) Explain static regain method. its advantages and applicability, limitations. [6]

[8]

c) List the different types of fans used in air conditioning system. State applications. [3]

OR

- **Q10)** a) Describe with sketch, physical working of humidity sensor and smoke sensors.
 - b) What are different materials used for ducts. State their advantages and disadvantages applications. [6]
 - c) List minor losses and the methods of estimation of minor losses. [5]

