Total No. of Questions—12]

[Total No. of Printed Pages—6

Seat	
No.	

[5057]-62

S.E. (Electronics/E & TC) (First Semester) EXAMINATION, 2016

SOLID STATES DEVICES AND CIRCUITS (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two sections should be written in separate answer-books.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.

SECTION I

- **1.** (a) Explain construction, operation and characteristics and application of photodiode. [8]
 - (b) Explain construction, operation and characteristics of *p*-channel E-MOSFET. [8]

Or

- **2.** (a) State the types of switching diodes and also list the applications of switching diodes. [8]
 - (b) Explain different scaling models of MOSFET, also explain various scaling factors and limitations of scaling. Explain small geometry effects.

P.T.O.

3. For the CS amplifier circuit shown in Fig. 1. Calculate the (a) voltage gain Av.

Assume k = 1 mA/V², $\lambda = 0$, V_T = 0.8 V. [8]

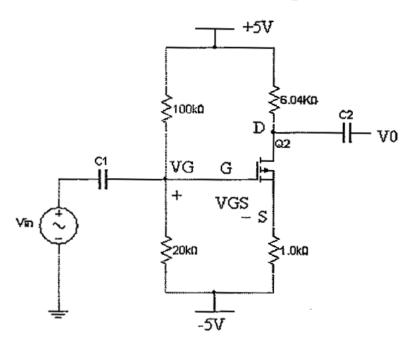
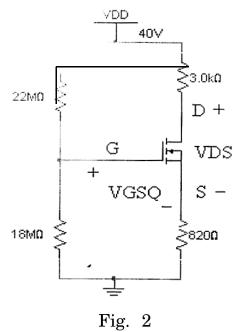



Fig. 1

Determine I_{DQ} , VGSQ and V_{DS} for the circuit shown in Fig. 2 (*b*) Given $VGS_{(TH)} = 5 \text{ V}$, $ID_{(on)} = 3 \text{ mA}$ at $VGS_{(ON)} = 10 \text{ V}$. [8]

- **4.** (a) Write a short note on 'Bi-CMOS' invertor. [8]
 - (b) For the CS amplifier circuit shown in Fig. 3. Calculate the voltage gain Av.

Assume k = 0.82 mA/V², $\lambda = 0.022$ /V, $V_T = 1$ V. [8]

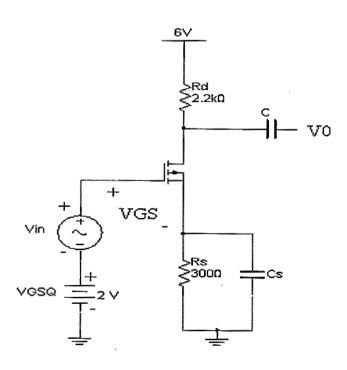


Fig. 3

- **5.** (a) Compare CE, CB, CC configurations of transistor. [6]
 - (b) Explain: [8]
 - (i) Thermal stabilization
 - (ii) Thermal runaway.
 - (c) What is the need of cascading amplifier? Give the selection of configuration in multistage amplifier. [4]

[5057]-62 3 P.T.O.

6.	(<i>a</i>)	Define the three thermal stability factors.	[6]
	(<i>b</i>)	Why the biasing is necessary in BJT amplifiers? Explain a	any
		one bias compensation technique.	[8]
	(c)	Explain different types of hybrid parameters.	[4]
		SECTION II	
7.	(a)	Derive the expression for slag and tilt for the square wa	ave
		testing method.	[8]
	(<i>b</i>)	Explain the effect of various capacitors listed below on frequen	ncy
		response of an Amplifier:	
		(i) Coupling capacitor	
		(ii) Emitter or source bypasses capacitor	
		(iii) Junction capacitance.	
		List the advantages of square wave testing.	10]
		Or	
8.	(a)	Draw and explain the small signal high frequency CE π -mo	del
		of a transistor.	[8]
	(<i>b</i>)	An RC coupled amplifier mid voltage gain 80 and ing	put
		resistance = 10 $k\Omega$ is fed from an ideal source through	a
		coupling capacitor of 0.22 µF. Calculate :	
		(i) Lower cut-off frequency	
		(ii) Voltage gain at 400 Hz	
		(iii) The frequency at which gain is 20 dB down.	10]
r = 0 =	· = 1.00		

9.	(a)	Write short notes on any two:	
		(i) Crystal oscillator	
		(ii) Hartley oscillator	
		(iii) Wien Bridge oscillator.	[8]
	(<i>b</i>)	Explain the effect of negative feedback amplifier performan	ce
		such as:	
		(i) Gain	
		(ii) Input and output impedance	
		(iii) Sensitivity	
		(iv) Bandwidth.	[8]
		Or	
10.	(a)	What are four basic amplifier types? Explain with the he	lp
		of block diagram.	[8]
	(<i>b</i>)	In a transistorized Hartley oscillator the two inductances a	re
		2 mH and 20 μH while the frequency is to be changed fro	m
		950 kHz to 2050 kHz. Calculate the range over which the	he
		capacitor is to be varied.	[8]
11.	(a)	Show that the maximum conversion efficiency of the idealize	ed
		class-B Push pull circuit is 78.5 percent.	[8]
	(<i>b</i>)	For distortion reading of D_2 = 0.15, D_3 = 0.01 ar	ıd
		$D_4 = 0.05$ with $I_1 = 3.3$ A and $R_C = 4$ Ω .	
		Calculate :	
		(i) Total harmonic distortion	
		(ii) Fundamental power component	
		(iii) Total power.	[8]
[505	7]-62	5 P.T.	O.

12. (a) For a Class-B amplifier providing a 22 V peak signal to 8 Ω load and a power supply of V_{CC} = 25 V. Find :

- (i) Input power
- (ii) Output power
- (iii) Circuit efficiency. [8]
- (b) Draw the circuit diagram of class B push-pull power amplifier and discuss in brief with the help of operation, merits and crossover distortion. [8]